A New Urban Road Detection Method in High-resolution Images Based on Bayesian Network

نویسندگان

  • Chuan XU
  • Yuanyuan FENG
چکیده

In view of the fact that road network detection effect in high-resolution image is not satisfying, an approach for road network detection based on Bayesian Network is put forward in this paper. First, under the guidance of existing GIS data, extract roads from remote-sensing images, and obtain most of the unchanged road edge information and suspected road edge information. Then, making use of the reasoning ability of Bayesian Network, collect strong evidence for identifying road network. Judge and make an inference from road edge information with the method of hypothetical test to extract road network in the remote-sensing image, and change information of the road network can also be obtained. * Corresponding author: XU Chuan, PhD candidate, majors in SAR image segmentation. Email: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Evaluation and comparison performance of deep neural networks FCN and RDRCNN in order to identify and extract urban road using images of Sentinel-2 with medium spatial resolution

Road extraction using remote sensing images has been one of the most interesting topics for researchers in recent years. Recently, the development of deep neural networks (DNNs) in the field of semantic segmentation has become one of the important methods of Road extraction. In the Meanwhile The majority of research in the field of road extraction using DNN in urban and non-urban areas has been...

متن کامل

Introducing An Efficient Set of High Spatial Resolution Images of Urban Areas to Evaluate Building Detection Algorithms

The present work aims to introduce an efficient set of high spatial resolution (HSR) images in order to more fairly evaluate building detection algorithms. The introduced images are chosen from two recent HSR sensors (QuickBird and GeoEye-1) and based on several challenges of urban areas encountered in building detection such as diversity in building density, building dissociation, building sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009